Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine

نویسندگان

  • Ji Li
  • Guoqing Hu
  • Yonghong Zhou
  • Chong Zou
  • Wei Peng
  • Jahangir Alam
چکیده

As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM

A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. ...

متن کامل

Modeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine

In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...

متن کامل

AN1646, Noise Considerations for Integrated Pressure Sensors

The Integrated Pressure Sensors (IPS) have trimmed outputs, built-in temperature compensation and an amplified single-ended output which make them compatible with Analog to Digital converters (A/D's) on low cost micro-controllers. Although 8-bit A/D's are most common, higher resolution A/D's are becoming increasingly available. With these higher resolution A/D's, the noise that is inherent to p...

متن کامل

Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine

This paper proposes a learning framework for single-hidden layer feedforward neural networks (SLFN) called optimized extreme learning machine (O-ELM). In O-ELM, the structure and the parameters of the SLFN are determined using an optimization method. The output weights, like in the batch ELM, are obtained by a least squares algorithm, but using Tikhonov’s regularization in order to improve the ...

متن کامل

Optimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature

The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017